Hands-on Exercise 1.2: Choropleth Mapping with R

Published

November 16, 2023

Modified

November 18, 2023

Overview

In this hands-on exercise, I learn how to plot functional and truthful choropleth maps by using an R package called tmap package.

Getting Started

The code chunk below will be used to install and load these packages in RStudio.

pacman::p_load(sf, tmap, tidyverse)

Importing Data into R

The code chunk below uses the st_read() function of sf package to import MP14_SUBZONE_WEB_PL shapefile into R as a simple feature data frame called mpsz.

mpsz <- st_read(dsn = "data/geospatial",layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\czx0727\ISSS624_\hands_on_ex1\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

Examine data

mpsz
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 10 features:
   OBJECTID SUBZONE_NO       SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1         1          1    MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2         2          1    PEARL'S HILL    OTSZ01      Y          OUTRAM
3         3          3       BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4         4          8  HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5         5          3         REDHILL    BMSZ03      N     BUKIT MERAH
6         6          7  ALEXANDRA HILL    BMSZ07      N     BUKIT MERAH
7         7          9   BUKIT HO SWEE    BMSZ09      N     BUKIT MERAH
8         8          2     CLARKE QUAY    SRSZ02      Y SINGAPORE RIVER
9         9         13 PASIR PANJANG 1    QTSZ13      N      QUEENSTOWN
10       10          7       QUEENSWAY    QTSZ07      N      QUEENSTOWN
   PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1          MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2          OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3          SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4          BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5          BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
6          BM CENTRAL REGION       CR 9D286521EF5E3B59 2014-12-05 25358.82
7          BM CENTRAL REGION       CR 7839A8577144EFE2 2014-12-05 27680.06
8          SR CENTRAL REGION       CR 48661DC0FBA09F7A 2014-12-05 29253.21
9          QT CENTRAL REGION       CR 1F721290C421BFAB 2014-12-05 22077.34
10         QT CENTRAL REGION       CR 3580D2AFFBEE914C 2014-12-05 24168.31
     Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1  29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2  29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3  29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4  29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5  30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...
6  29991.38   4428.913  1030378.8 MULTIPOLYGON (((25899.7 297...
7  30230.86   3275.312   551732.0 MULTIPOLYGON (((27746.95 30...
8  30222.86   2208.619   290184.7 MULTIPOLYGON (((29351.26 29...
9  29893.78   6571.323  1084792.3 MULTIPOLYGON (((20996.49 30...
10 30104.18   3454.239   631644.3 MULTIPOLYGON (((24472.11 29...

Importing Attribute Data into R

import respopagsex2000to2018.csv file into RStudio and save the file into an R dataframe called popagsex.

popdata <- read_csv("data/aspatial/respopagesextod2011to2020.csv")
Rows: 984656 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): PA, SZ, AG, Sex, TOD
dbl (2): Pop, Time

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Data Preparation

To prepare a data table with year 2020 values. The data table should include the variables PA, SZ, YOUNG, ECONOMY ACTIVE, AGED, TOTAL, DEPENDENCY.

  • YOUNG: age group 0 to 4 until age group 20 to 24,

  • ECONOMY ACTIVE: age group 25-29 until age group 60-64,

  • AGED: age group 65 and above,

  • TOTAL: all age group, and

  • DEPENDENCY: the ratio between young and aged against economy active group

Data wrangling

The following data wrangling and transformation functions will be used:

  • pivot_wider() of tidyr package, and

  • mutate(), filter(), group_by() and select() of dplyr package

popdata2020 <- popdata %>%
  filter(Time == 2020) %>%
  group_by(PA, SZ, AG) %>%
  summarise(`POP` = sum(`Pop`)) %>%
  ungroup()%>%
  pivot_wider(names_from=AG, 
              values_from=POP) %>%
  mutate(YOUNG = rowSums(.[3:6])
         +rowSums(.[12])) %>%
mutate(`ECONOMY ACTIVE` = rowSums(.[7:11])+
rowSums(.[13:15]))%>%
mutate(`AGED`=rowSums(.[16:21])) %>%
mutate(`TOTAL`=rowSums(.[3:21])) %>%  
mutate(`DEPENDENCY` = (`YOUNG` + `AGED`)
/`ECONOMY ACTIVE`) %>%
  select(`PA`, `SZ`, `YOUNG`, 
       `ECONOMY ACTIVE`, `AGED`, 
       `TOTAL`, `DEPENDENCY`)
`summarise()` has grouped output by 'PA', 'SZ'. You can override using the
`.groups` argument.

Joining the attribute data and geospatial data

I would convert the values in PA and SZ fields to uppercase

popdata2020 <- popdata2020 %>%
  mutate_at(.vars = vars(PA, SZ), 
          .funs = list(toupper)) %>%
  filter(`ECONOMY ACTIVE` > 0)

left_join() of dplyr is used to join the geographical data and attribute table using planning subzone name e.g. SUBZONE_N and SZ as the common identifier.

mpsz_pop2020 <- left_join(mpsz, popdata2020,
                          by = c("SUBZONE_N" = "SZ"))

** left_join() of dplyr package is used with mpsz simple feature data frame as the left data table is to ensure that the output will be a simple features data frame.

write_rds(mpsz_pop2020, "data/mpszpop2020.rds")

Read here to know more about rds

Choropleth Mapping Geospatial Data Using tmap

Two approaches can be used to prepare thematic map using tmap, they are:

  • Plotting a thematic map quickly by using qtm().

  • Plotting highly customisable thematic map by using tmap elements.

Plotting a choropleth map quickly by using qtm()

tmap_mode("plot") 
tmap mode set to plotting
qtm(mpsz_pop2020,      
    fill = "DEPENDENCY")

Things to learn from the code chunk above:

  • tmap_mode() with “plot” option is used to produce a static map. For interactive mode, “view” option should be used.

  • fill argument is used to map the attribute (i.e. DEPENDENCY)

Creating a choropleth map by using tmap’s elements

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "Blues",
          title = "Dependency ratio") +
  tm_layout(main.title = "Distribution of Dependency Ratio by planning subzone",
            main.title.position = "center",
            main.title.size = 1.2,
            legend.height = 0.45, 
            legend.width = 0.35,
            frame = TRUE) +
  tm_borders(alpha = 0.5) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar() +
  tm_grid(alpha =0.2) +
  tm_credits("Source: Planning Sub-zone boundary from Urban Redevelopment Authorithy (URA)\n and Population data from Department of Statistics DOS", 
             position = c("left", "bottom"))

Drawing a base map

In the code chunk below, tm_shape() is used to define the input data (i.e mpsz_pop2020) and tm_polygons() is used to draw the planning subzone polygons

tm_shape(mpsz_pop2020) +   tm_polygons()

Drawing a choropleth map using tm_polygons()

tm_shape(mpsz_pop2020)+  
  tm_polygons("DEPENDENCY")

3 learning points from tm_polygons():

  • The default interval binning used to draw the choropleth map is called “pretty”.

  • The default colour scheme used is YlOrRd of ColorBrewer.

  • By default, Missing value will be shaded in grey.

Drawing a choropleth map using tm_fill() and *tm_border()**

tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY")

To add the boundary of the planning subzones, tm_borders will be used as shown in the code chunk below.

tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY") +   
  tm_borders(lwd = 0.1,  alpha = 1)

To notes: Beside alpha argument, there are three other arguments for tm_borders(), they are:

  • col = border colour,

  • lwd = border line width. The default is 1, and

  • lty = border line type. The default is “solid”.

Data classification methods of tmap

tmap provides a total ten data classification methods, namely: fixedsdequalpretty (default), quantilekmeanshclustbclustfisher, and jenks.

Plotting choropleth maps with built-in classification methods

tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY",          
          n = 5,           
          style = "jenks") +   
  tm_borders(alpha = 0.5)

In the code chunk below, equal data classification method is used.

tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY",          
          n = 5,           
          style = "equal") +   
  tm_borders(alpha = 0.5)

  • Note that the distribution of quantile data classification method are more evenly distributed then equal data classification method.

DIY

  1. Using k-means and 10 classes
tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY",           
          n = 10,           
          style = "kmeans") +   
  tm_borders(alpha = 0.5)

  1. Using hclust and 20 classes
tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY",           
          n = 20,           
          style = "hclust") +   
  tm_borders(alpha = 0.5)

Plotting choropleth map with custom break

To get some descriptive analysis first

summary(mpsz_pop2020$DEPENDENCY)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
 0.1111  0.7147  0.7866  0.8585  0.8763 19.0000      92 

Plot Choropleth map

tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY",           
          breaks = c(0, 0.60, 0.70, 0.80, 0.90, 1.00)) +   
  tm_borders(alpha = 0.5)
Warning: Values have found that are higher than the highest break

Colour Scheme

Using ColourBrewer palette

To change the colour, we assign the preferred colour to palette argument of tm_fill() as shown in the code chunk below.

tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY",           
          n = 6,           
          style = "quantile",           
          palette = "Blues") +   
  tm_borders(alpha = 0.5)

To reverse the colour shading, add a “-” prefix.

tm_shape(mpsz_pop2020)+   
  tm_fill("DEPENDENCY",           
          style = "quantile",           
          palette = "-Greens") +   
  tm_borders(alpha = 0.5)

Map Layouts

Map Legend

In tmap, several legend options are provided to change the placement, format and appearance of the legend.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "jenks", 
          palette = "Blues", 
          legend.hist = TRUE, 
          legend.is.portrait = TRUE,
          legend.hist.z = 0.1) +
  tm_layout(main.title = "Distribution of Dependency Ratio by planning subzone \n(Jenks classification)",
            main.title.position = "center",
            main.title.size = 1,
            legend.height = 0.45, 
            legend.width = 0.35,
            legend.outside = FALSE,
            legend.position = c("right", "bottom"),
            frame = FALSE) +
  tm_borders(alpha = 0.5)

Map style

tmap allows a wide variety of layout settings to be changed. They can be called by using tmap_style().

The code chunk below shows the classic style is used.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "-Greens") +
  tm_borders(alpha = 0.5) +
  tmap_style("classic")
tmap style set to "classic"
other available styles are: "white", "gray", "natural", "cobalt", "col_blind", "albatross", "beaver", "bw", "watercolor" 

Cartographic Furniture

Beside map style, tmap also also provides arguments to draw other map furniture such as compass, scale bar and grid lines.

In the code chunk below, tm_compass(), tm_scale_bar() and tm_grid() are used to add compass, scale bar and grid lines onto the choropleth map.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "Blues",
          title = "No. of persons") +
  tm_layout(main.title = "Distribution of Dependency Ratio \nby planning subzone",
            main.title.position = "center",
            main.title.size = 1.2,
            legend.height = 0.45, 
            legend.width = 0.35,
            frame = TRUE) +
  tm_borders(alpha = 0.5) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar(width = 0.15) +
  tm_grid(lwd = 0.1, alpha = 0.2) +
  tm_credits("Source: Planning Sub-zone boundary from Urban Redevelopment Authorithy (URA)\n and Population data from Department of Statistics DOS", 
             position = c("left", "bottom"))

** To reset to default

Drawing Small Multiple Choropleth Maps

By assigning multiple values to at least one of the aesthetic arguments

In this example, small multiple choropleth maps are created by defining ncols in tm_fill()

tm_shape(mpsz_pop2020)+
  tm_fill(c("YOUNG", "AGED"),
          style = "equal", 
          palette = "Blues") +
  tm_layout(legend.position = c("right", "bottom")) +
  tm_borders(alpha = 0.5) +
  tmap_style("white")
tmap style set to "white"
other available styles are: "gray", "natural", "cobalt", "col_blind", "albatross", "beaver", "bw", "classic", "watercolor" 

tm_shape(mpsz_pop2020)+ 
  tm_polygons(c("DEPENDENCY","AGED"),
          style = c("equal", "quantile"), 
          palette = list("Blues","Greens")) +
  tm_layout(legend.position = c("right", "bottom"))

By defining a group-by variable in tm_facets()

Multiple small choropleth maps are created by using tm_facets().

tm_shape(mpsz_pop2020) +
  tm_fill("DEPENDENCY",
          style = "quantile",
          palette = "Blues",
          thres.poly = 0) + 
  tm_facets(by="REGION_N", 
            free.coords=TRUE, 
            drop.shapes=TRUE) +
  tm_layout(legend.show = FALSE,
            title.position = c("center", "center"), 
            title.size = 20) +
  tm_borders(alpha = 0.5)
Warning: The argument drop.shapes has been renamed to drop.units, and is
therefore deprecated

By creating multiple stand-alone maps with tmap_arrange()

youngmap <- tm_shape(mpsz_pop2020)+ 
  tm_polygons("YOUNG", 
              style = "quantile", 
              palette = "Blues")

agedmap <- tm_shape(mpsz_pop2020)+ 
  tm_polygons("AGED", 
              style = "quantile", 
              palette = "Blues")

tmap_arrange(youngmap, agedmap, asp=1, ncol=2)

Mappping Spatial Object Meeting a Selection Criterion

I can also use selection funtion to map spatial objects meeting the selection criterion.

tm_shape(mpsz_pop2020[mpsz_pop2020$REGION_N=="CENTRAL REGION", ])+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "Blues", 
          legend.hist = TRUE, 
          legend.is.portrait = TRUE,
          legend.hist.z = 0.1) +
  tm_layout(legend.outside = TRUE,
            legend.height = 0.45, 
            legend.width = 5.0,
            legend.position = c("right", "bottom"),
            frame = FALSE) +
  tm_borders(alpha = 0.5)
Warning in pre_process_gt(x, interactive = interactive, orig_crs =
gm$shape.orig_crs): legend.width controls the width of the legend within a map.
Please use legend.outside.size to control the width of the outside legend